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Particle tracking at the LHC

• An interesting and challenging 
pattern recognition problem 

• A very important piece of event 
reconstruction!

Up to 200 interactions per bunch crossing Thousands of charge particle tracks



ATLAS and CMS tracking detectors

• Cylindrical detectors composed of pixel, strip, or TRT 
layers to detect passage of charged particles 

• Both undergoing evolution for HL-LHC 
• O(100M) readout channels!
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http://iopscience.iop.org/article/10.1088/1748-0221/3/08/S08004

http://atlas.cern/discover/detector/inner-detector

ATLAS CMS

http://iopscience.iop.org/article/10.1088/1748-0221/3/08/S08004
http://atlas.cern/discover/detector/inner-detector


The situation today

• Current tracking algorithms have been used very 
successfully in HEP/LHC experiments 
• Good efficiency and modeling with acceptable throughput/

latency 
• However, they don’t scale so well to HL-LHC conditions 

• Thousands of charged particles, O(105) 3D spacepoints, 
while algorithms scale worse than quadratic 

• Thus, it’s worthwhile to try and think “outside the box”; i.e., 
consider Deep Learning algorithms 
• Relatively unexplored area of research 
• Might be able to reduce computational cost or at least 

increase parallelization 
• Might see major improvements
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Some deep learning inspirations
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https://arxiv.org/abs/1604.02135

Image segmentation
Online object tracking

Image captioning

https://arxiv.org/abs/1604.03635

https://arxiv.org/abs/1604.02135
https://arxiv.org/abs/1604.03635


Current algorithmic approach (ATLAS, CMS)

• Divide the problem into sequential steps 
1. Cluster hits into 3D spacepoints 
2. Build triplet “seeds” 
3. Build tracks with combinatorial 

Kalman Filter 
4. Resolve ambiguities and fit tracks
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Credit: Andy Salzburger

Alternative approaches include Hough transform, Cellular Automaton, RANSAC, etc.



Where to begin?

• What could ML be applied to? 
• hit clustering 
• seed finding 
• single-track hit assignment 
• multiple-track “clustering” 
• track fitting 
• end to end pixels to tracks 

• How to represent the inputs, outputs (and 
intermediates)? 
• discrete vs. continuous space 
• hit assignments vs. physics quantities 
• engineered vs. learned representations
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Many options!



Various challenges

• Data sparsity 
• Occupancy << 1% 
• Except in dense jets… 

• Data irregularity 
• Complex geometry 
• Detector inefficiencies, material effects 

• Defining good cost functions 
• Particularly for multi-track models 
• How to quantify reco efficiency in a differentiable way? 

• Experimental constraints on performance, interpretability 
• A big deal, for obvious reasons 

• Time and space complexity constraints 
• Otherwise, what’s the point?
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CMS “tilted” proposal for HL-LHC



Detector images

• Neutrino experiments may have nice “image” detectors, but it’s a bit 
harder with LHC detectors! 

• Maybe we can unroll + flatten the barrel layers 
• …but size increases with each detector layer 

• Raw data is extremely high dimensional                                           
(O(108) channels!) 
• Maybe we can coarsen it                                                                     

(like AM methods) 
• Smart down-sampling needed 

• CV techniques are good at this
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Nova CMS “tilted” proposal



Convolutional networks as track finders

• Convolutional filters can be thought of as track pattern matchers 
• Early layers look for track stubs 
• Later layers connect stubs together to build tracks 
• Learned representations are in reality optimized for the data => may be abstract 

and more compact than brute force pattern bank 
• The learned features can be used in a variety of ways 

• Extract out track parameters 
• Project back to detector image and classify hits

10

ç

Input track image Stub features Segment features

Stub filters

Higher level 
features

etc.

Convolutions and pooling

?



What can CNNs learn about tracks?

• Convolutional auto-encoder: can it learn a smaller-dimensional 
representation that allows it to fully reconstruct its inputs? 
• Decently well 

• De-noising: can it clean out noise hits? 
• Seems so
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https://github.com/HEPTrkX/heptrkx-dshep17/blob/master/cnn/cnn2d_learning.ipynb

https://github.com/HEPTrkX/heptrkx-dshep17/blob/master/cnn/cnn2d_learning.ipynb


What can CNNs learn about tracks?

• Track parameter estimation: can it predict the tracks’ parameters? 
• Some inspiration from Hough Transform: binned parameter space with 

peaks at the correct values 
• By converting regression problem into discrete classification problem, can 

handle variable number of tracks with relatively simple CNN architecture 

• Might be an interesting approach, but it has limitations 
• doesn’t map params onto the hits like Hough 
• precision comes at cost of dimensionality 12

https://github.com/HEPTrkX/heptrkx-dshep17/blob/master/cnn/cnn2d_learning.ipynb

https://github.com/HEPTrkX/heptrkx-dshep17/blob/master/cnn/cnn2d_learning.ipynb


Ongoing HEP.TrkX studies

• About the project 
• https://heptrkx.github.io/ 
• Pilot project funded by DOE ASCR and COMP HEP 
• Part of HEP CCE 
• People: 

• Exploratory work on toy datasets 
• Hit classification for seeded tracks with LSTMs and CNNs 
• End-to-end track parameter estimation with CNN + LSTM 
• and some others
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LBL:       Me, Mayur Mudigonda, Prabhat, Paolo 
Caltech: Dustin Anderson, Jean-Roch Vlimant, Josh Bendavid, Maria Spiropoulou, Stephan Zheng 
FNAL:     Aristeidis Tsaris, Giuseppe Cerati, Jim Kowalkowski, Lindsey Gray, Panagiotis Spentzouris

https://heptrkx.github.io/


Hit classification with LSTMs in 2D

• Seeded track inputs, pixel score 
outputs per detector layer 

• Works decently well 
• Can be extended to multiple 

input seeds and output channels
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Track in 20% noise

Multi-track background

Variable-sized 
detector layers

softmax activations

https://github.com/HEPTrkX/heptrkx-ctd/blob/master/hit_classification/lstm_toy2D.ipynb
https://github.com/HEPTrkX/heptrkx-ctd/blob/master/hit_classification/lstm_toy2D_varlayer.ipynb

https://github.com/HEPTrkX/heptrkx-ctd/blob/master/hit_classification/lstm_toy2D.ipynb
https://github.com/HEPTrkX/heptrkx-ctd/blob/master/hit_classification/lstm_toy2D_varlayer.ipynb


Hit classification with CNNs in 2D

• CNNs can also extrapolate 
and find tracks 

• Extrapolation reach may be 
limited without 
downsampling 

• Autoencoder architecture 
allows to extrapolate farther
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Trained with 10 conv layers, no down-sampling 

9-layer convolutional “autoencoder"

https://github.com/HEPTrkX/heptrkx-ctd/blob/master/hit_classification/cnn_toy2D.ipynb

https://github.com/HEPTrkX/heptrkx-ctd/blob/master/hit_classification/cnn_toy2D.ipynb


Hit classification with CNNs in 3D

• Basic CNN model with 10 layers and 3x3x3 filters 
• Gives nice clean, precise predictions
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Projected input

Projected output

3 avg bkg tracks, 1% noise



Architecture comparisons

• Both LSTMs and CNNs do well at classifying hits for reasonable 
occupancy 

• Models’ performance degrades with increasing track multiplicity 
• CNNs seem to scale well to high track multiplicity
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Uses best pixel Uses best hit pixel



Track parameter estimation
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• Use a basic CNN with downsampling 
and regression head to estimate a 
track’s parameters 
• could be an auxiliary target to guide 

training, or potentially useful as the 
final output of tracking! 

• Identifying straight line params in heavy 
noise:

[Work of Dustin Anderson]



Extending to variable number of tracks

• Attach an LSTM to a CNN to emit parameters for a variable number of tracks! 
• The LSTM generates the sequence of parameters 
• Requires an ordering the model can learn 
• Should provide some kind of stopping criteria
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[Work of Dustin Anderson]



Estimating uncertainties on parameters

• Train the model to also estimate the uncertainties by adding additional targets: 

• Train using a log gaussian likelihood loss: 

• and voila!
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[Work of Dustin Anderson]



Visualizing CNN features

• We can visualize what the CNN is learning by finding images which maximize 
a particular filter’s activation 

• Here are the 2nd layer filters of the CNN+LSTM track parameter model
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[Work of Dustin Anderson]



Conclusion

• There is some hope that deep learning techniques could be useful for particle 
tracking 
• Powerful non-linear modeling capabilities 
• Learned representations > engineered features 
• Easy parallelization 

• It’s not yet known if computer vision techniques like CNNs offer the most 
promise, but they have some nice features 
• They can learn useful things about the data and seem versatile 
• Some successes seen with highly simple toy datasets 

• Where do we go from here? 
• Try to apply these ideas to realistically complex data 
• Continue thinking up new approaches
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Backup
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3D toy detector data

• Starting to get a little more “realistic” 
• 10 detector planes, 32x32 pixels each 
• Number of background tracks sampled from Poisson 
• With/without random noise hits 

• Adapting my existing models to this data is mostly straightforward 
• Flatten each plane for the LSTM models 
• Use 3D convolution
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What can CNNs learn about tracks?

• Track counting: can it predict how many tracks are in an event? 
• can be framed as a regression problem, but here I framed it as a 
classification problem 

• seemingly not a very difficult task for a deep NN
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https://github.com/HEPTrkX/heptrkx-dshep17/blob/master/cnn/cnn2d_learning.ipynb

https://github.com/HEPTrkX/heptrkx-dshep17/blob/master/cnn/cnn2d_learning.ipynb


Next-layer LSTM prediction

• Next-layer model gives predictions that are less precise but smoother and more accurate 
• Mostly unaffected by nearby stray hits 

• With this detector occupancy, they are the best at classifying hits 
• but this may change with higher occupancy
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Projected input

Projected output

3 avg bkg tracks, 1% noise



The HEP.TrkX project

• A 1-year pilot project to develop ML algorithms for HEP tracking 
• Funded by DOE ASCR and COMP HEP, part of HEP CCE 
• Collaboration between ATLAS, CMS, LAr folks from LBL, Caltech, and FNAL 

• Some goals 
• Explore the broad space of ideas on simplified tracking problems 
• Develop a toolkit of promising ideas 

• ideas that work (physics constraints) 
• ideas that scale (computing constraints) 

• The work is in an exploratory phase 
• Testing ideas in a breadth-first fashion 
• Very much a work-in-progress
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LBL:       Me, Mayur Mudigonda, Prabhat, Paolo 
Caltech: Dustin Anderson, Jean-Roch Vlimant, Josh Bendavid, Maria Spiropoulou, Stephan Zheng 
FNAL:     Aristeidis Tsaris, Giuseppe Cerati, Jim Kowalkowski, Lindsey Gray, Panagiotis Spentzouris



Other ideas - data transforms

• Hough Transform breaks down in LHC-like data due to process noise 
and high occupancy 

• But what if a deep network could learn a mapping to group together 
hits that belong to the same track? 
• You don’t need to impose a specific representation 
• The model could take event context into account
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Other ideas - graph convolutions

• Graph convolutions operate on graph-structured data, taking into account 
distance metrics 
• https://tkipf.github.io/graph-convolutional-networks/ 

• Connections between ~plausible hits on detector layers can form the graph 
• Handles sparsity naturally 
• Scales naturally with occupancy 

• I haven’t dedicated much thought to this yet, but it may be versatile enough to 
do the kinds of things I’ve already demonstrated
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https://tkipf.github.io/graph-convolutional-networks/


ATLAS tracking in dense environments
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Stolen from Ben Nachman’s TPM presentation: 
https://indico.physics.lbl.gov/indico/event/433/

https://indico.physics.lbl.gov/indico/event/433/


Model architectures - ConvNN
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____________________________________________________________________________________________________
Layer (type)                     Output Shape          Param #     Connected to
====================================================================================================
input_1 (InputLayer)             (None, 10, 32, 32)    0
____________________________________________________________________________________________________
reshape_1 (Reshape)              (None, 1, 10, 32, 32) 0           input_1[0][0]
____________________________________________________________________________________________________
convolution3d_1 (Convolution3D)  (None, 8, 10, 32, 32) 224         reshape_1[0][0]
____________________________________________________________________________________________________
convolution3d_2 (Convolution3D)  (None, 8, 10, 32, 32) 1736        convolution3d_1[0][0]
____________________________________________________________________________________________________
convolution3d_3 (Convolution3D)  (None, 8, 10, 32, 32) 1736        convolution3d_2[0][0]
____________________________________________________________________________________________________
convolution3d_4 (Convolution3D)  (None, 8, 10, 32, 32) 1736        convolution3d_3[0][0]
____________________________________________________________________________________________________
convolution3d_5 (Convolution3D)  (None, 8, 10, 32, 32) 1736        convolution3d_4[0][0]
____________________________________________________________________________________________________
convolution3d_6 (Convolution3D)  (None, 8, 10, 32, 32) 1736        convolution3d_5[0][0]
____________________________________________________________________________________________________
convolution3d_7 (Convolution3D)  (None, 8, 10, 32, 32) 1736        convolution3d_6[0][0]
____________________________________________________________________________________________________
convolution3d_8 (Convolution3D)  (None, 8, 10, 32, 32) 1736        convolution3d_7[0][0]
____________________________________________________________________________________________________
convolution3d_9 (Convolution3D)  (None, 8, 10, 32, 32) 1736        convolution3d_8[0][0]
____________________________________________________________________________________________________
convolution3d_10 (Convolution3D) (None, 8, 10, 32, 32) 1736        convolution3d_9[0][0]
____________________________________________________________________________________________________
convolution3d_11 (Convolution3D) (None, 1, 10, 32, 32) 217         convolution3d_10[0][0]
____________________________________________________________________________________________________
reshape_2 (Reshape)              (None, 10, 1024)      0           convolution3d_11[0][0]
____________________________________________________________________________________________________
timedistributed_1 (TimeDistribute(None, 10, 1024)      0           reshape_2[0][0]
====================================================================================================
Total params: 16065
____________________________________________________________________________________________________



Model architectures - Conv autoencoder
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____________________________________________________________________________________________________
Layer (type)                     Output Shape          Param #     Connected to
====================================================================================================
input_1 (InputLayer)             (None, 10, 32, 32)    0
____________________________________________________________________________________________________
reshape_1 (Reshape)              (None, 1, 10, 32, 32) 0           input_1[0][0]
____________________________________________________________________________________________________
convolution3d_1 (Convolution3D)  (None, 8, 10, 32, 32) 224         reshape_1[0][0]
____________________________________________________________________________________________________
convolution3d_2 (Convolution3D)  (None, 8, 10, 32, 32) 1736        convolution3d_1[0][0]
____________________________________________________________________________________________________
maxpooling3d_1 (MaxPooling3D)    (None, 8, 10, 16, 16) 0           convolution3d_2[0][0]
____________________________________________________________________________________________________
dropout_1 (Dropout)              (None, 8, 10, 16, 16) 0           maxpooling3d_1[0][0]
____________________________________________________________________________________________________
convolution3d_3 (Convolution3D)  (None, 16, 10, 16, 16)3472        dropout_1[0][0]
____________________________________________________________________________________________________
convolution3d_4 (Convolution3D)  (None, 16, 10, 16, 16)6928        convolution3d_3[0][0]
____________________________________________________________________________________________________
maxpooling3d_2 (MaxPooling3D)    (None, 16, 10, 8, 8)  0           convolution3d_4[0][0]
____________________________________________________________________________________________________
dropout_2 (Dropout)              (None, 16, 10, 8, 8)  0           maxpooling3d_2[0][0]
____________________________________________________________________________________________________
convolution3d_5 (Convolution3D)  (None, 32, 10, 8, 8)  13856       dropout_2[0][0]
____________________________________________________________________________________________________
maxpooling3d_3 (MaxPooling3D)    (None, 32, 10, 4, 4)  0           convolution3d_5[0][0]
____________________________________________________________________________________________________
dropout_3 (Dropout)              (None, 32, 10, 4, 4)  0           maxpooling3d_3[0][0]
____________________________________________________________________________________________________
convolution3d_6 (Convolution3D)  (None, 64, 10, 4, 4)  55360       dropout_3[0][0]
____________________________________________________________________________________________________
maxpooling3d_4 (MaxPooling3D)    (None, 64, 10, 2, 2)  0           convolution3d_6[0][0]
____________________________________________________________________________________________________
dropout_4 (Dropout)              (None, 64, 10, 2, 2)  0           maxpooling3d_4[0][0]
____________________________________________________________________________________________________
convolution3d_7 (Convolution3D)  (None, 96, 10, 2, 2)  73824       dropout_4[0][0]
____________________________________________________________________________________________________
maxpooling3d_5 (MaxPooling3D)    (None, 96, 10, 1, 1)  0           convolution3d_7[0][0]
____________________________________________________________________________________________________
dropout_5 (Dropout)              (None, 96, 10, 1, 1)  0           maxpooling3d_5[0][0]
____________________________________________________________________________________________________
convolution3d_8 (Convolution3D)  (None, 128, 10, 1, 1) 36992       dropout_5[0][0]
____________________________________________________________________________________________________
permute_1 (Permute)              (None, 10, 128, 1, 1) 0           convolution3d_8[0][0]
____________________________________________________________________________________________________
reshape_2 (Reshape)              (None, 10, 128)       0           permute_1[0][0]
____________________________________________________________________________________________________
timedistributed_1 (TimeDistribute(None, 10, 1024)      132096      reshape_2[0][0]
====================================================================================================
Total params: 324488
____________________________________________________________________________________________________



Model architectures - LSTM
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____________________________________________________________________________________________________
Layer (type)                     Output Shape          Param #     Connected to
====================================================================================================
input_1 (InputLayer)             (None, 9, 1024)       0
____________________________________________________________________________________________________
lstm_1 (LSTM)                    (None, 9, 1024)       8392704     input_1[0][0]
____________________________________________________________________________________________________
timedistributed_1 (TimeDistribute(None, 9, 1024)       1049600     lstm_1[0][0]
====================================================================================================
Total params: 9442304
____________________________________________________________________________________________________


